KNNMultiRoundRouter (training + inference)¶
KNNMultiRoundRouter extends KNN routing to multi-round workflows (decomposition, per-step execution, aggregation).
Notebooks: - Training: https://github.com/ulab-uiuc/LLMRouter/blob/main/notebooks/knnmultiroundrouter/01_knnmultiroundrouter_training.ipynb - Inference: https://github.com/ulab-uiuc/LLMRouter/blob/main/notebooks/knnmultiroundrouter/02_knnmultiroundrouter_inference.ipynb
Router docs: https://github.com/ulab-uiuc/LLMRouter/blob/main/llmrouter/models/knnmultiroundrouter/README.md
Configs¶
- Train: https://github.com/ulab-uiuc/LLMRouter/blob/main/configs/model_config_train/knnmultiroundrouter.yaml
- Test: https://github.com/ulab-uiuc/LLMRouter/blob/main/configs/model_config_test/knnmultiroundrouter.yaml
Run (CLI)¶
Train:
llmrouter train --router knnmultiroundrouter --config configs/model_config_train/knnmultiroundrouter.yaml
Route-only inference:
llmrouter infer --router knnmultiroundrouter --config configs/model_config_test/knnmultiroundrouter.yaml --query "Plan a 3-step study schedule for linear algebra." --route-only
Full inference:
llmrouter infer --router knnmultiroundrouter --config configs/model_config_test/knnmultiroundrouter.yaml --query "Plan a 3-step study schedule for linear algebra."
Note
Full inference may call external LLM APIs during decomposition/execution. Set API_KEYS and ensure your llm_data has api_endpoint and model fields.