Config reference¶
LLMRouter uses YAML config files for training and inference. This page lists common keys and how they are used.
Top-level keys¶
| Key | Description |
|---|---|
data_path |
Dataset and metadata paths |
model_path |
Model checkpoints and artifacts |
metric |
Objective weights for routing |
hparam |
Router-specific hyperparameters |
api_endpoint |
Optional inference endpoint |
data_path¶
Supported keys (common across routers):
- query_data_train (jsonl)
- query_data_test (jsonl)
- query_embedding_data (pt)
- routing_data_train (jsonl)
- routing_data_test (jsonl)
- llm_data (json)
- llm_embedding_data (json)
Absolute paths are used as-is. Relative paths are resolved against the LLMRouter "project root" (the directory containing the llmrouter/ package).
Note
If you installed from PyPI (not a repo clone), relative paths often won't point to your local data. Prefer absolute paths.
model_path¶
Common keys:
- ini_model_path
- save_model_path
- load_model_path
llmrouter infer --load_model_path overrides model_path.load_model_path in the config.
metric¶
Weights for routing objectives. Example:
hparam¶
Router-specific hyperparameters. Refer to router-specific configs for exact fields.
api_endpoint¶
Optional global fallback API base URL for inference.
Inference expects an endpoint from either:
llm_data[model_name].api_endpoint(per model), orapi_endpointin the YAML config
If neither is set, llmrouter infer fails with an "API endpoint not found" error.
RouterR1 special fields¶
router_r1 expects api_base and api_key under hparam: