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Recap: Heterogeneous Graphs

= Heterogeneous graphs: a graph with multiple relation types
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Recap: Relational GCN

" Learn from a graph with multiple relation types

= Use different neural network weights for different relation types!
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Today: Knowledge Graphs (KG)

Knowledge in graph form:
= Capture entities, types, and relationships

= Nodes are entities

= Nodes are labeled with
their types

" Edges between two nodes
capture relationships
between entities

"= KG is an example of a
heterogeneous graph
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Example: Bibliographic Networks

* Node types: paper, title, author, conference, year
= Relation types: pubWhere, pubYear, hasTitle, hasAuthor, cite

pubWhere hasTtile
Conference [« Paper »  Title

Author Year
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Example: Bio Knowledge Graphs

* Node types: drug, disease, adverse event, protein, pathways
= Relation types: has_func, causes, assoc, treats, is_a

@® Drug

@ Disease

€@ Adverse event
Protein

A Pathways
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Knowledge Graphs in Practice

Examples of knowledge graphs
= Google Knowledge Graph
= Amazon Product Graph
= Facebook Graph API
= IBM Watson
= Microsoft Satori
= Project Hanover/Literome
= LinkedIn Knowledge Graph

" Yandex Object Answer
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Applications of Knowledge Graphs

= Serving information:

BS Microsoft Bing latest films by the director of titanic 9 ey

ALL WORK VIDEOS IMAGES MAPS NEWS SHOPPING

Movies featuring James Cameron
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Applications of Knowledge Graphs

= Question answering and conversation agents — the classic approach
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Knowledge Graph Datasets

= Publicly available KGs:
" FreeBase, Wikidata, Dbpedia, YAGO, NELL, etc.

= Common characteristics:
= Massive: Millions of nodes and edges
" Incomplete: Many true edges are missing

Given a massive KG,
enumerating all the

possible facts is
intractable!
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Example: Freebase

* Freebase
= ~80 million entities
= ~38K relation types
= ~3 billion facts/triples

= Datasets: FB15k/FB15k-237

r~ Freebase

93.8% of persons from Freebase
<: have no place of birth and 78.5%
have no nationality!

= A complete subset of Freebase, used by researchers to learn KG models

Dataset Entities | Relations | Total Edges
FB15k 14,951 1.345 502213
FB15k-237 | 14.505 237 310.079
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Beyond Simple Graphs: Knowledge Graphs
Knowledge Graph Completion



KG Completion Task

Given an enormous KG, can we complete the KG?

* For a given (head, relation), we predict missing tails.
* (Note this is slightly different from link prediction task)

J.R.R Tolkien
Science Fiction missing relation:
_ N genre
Example task: predict the R genre
T . . . . ~
tail “Science Fiction” for RN
“ : T ” enre S
(“J.K. Rowling”, “genre”) g . Influence
enr\e\\ Fantasy
Stephen King g M genre
N
~ .
Influence  “~ J-K. Rowling
’ Influence
Influence C.S. Lewis
; ge' € Influence
Alan Poe Tragicomedy \' Lloyd Alexander
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Recap: "Shallow” Encoding

= Simplest encoding approach: encoder is just an embedding-lookup

embedding vector for a

embedding specific node
Z _ Dimension/size
o ~ of embeddings
\ |
|

one column per node
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KG Representation

= Edges in KG are represented as triples (h,7,t)
= head (h) has relation (r) with tail (t)
= Key ldea:

= Model entities and relations in embedding space R¢
= Associate entities and relations with shallow embeddings (not GNNs)
= Each node and each type of relation has a unique trainable embedding
= Given a triple (h, 1, t), the goal is that the embedding of (A, 1) should be
close to the embedding of t.
* How to embed (h,7)?

= How to define score function f,.(h, t)?
= Score f, is high if (h, 1, t) exists, else f, is low

QQ/79/724 CS5982- Deen learnina with Granhe liaxiian Yo
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Discussion: How KG Methods Relate to GNNSs?

= |n essence, KG methods are loss/score functions defined over node
and edge embeddings

= Since KGs are heterogeneous graphs with different relation types, we
study edge (type) embeddings for each edge type

= Shallow embeddings are used to obtain node/edge embeddings for
simplicity, but more advanced deep encoders, e.g., (heterogeneous)

GNNs, can be used



Many KG Embedding

* Manv KG embedding Models:

TransH

(Wang et al., 2014)

2013 2014

(Bordes et al., 2014)

SE TranskE
(Bordes et al., 2011) (Bordes et al., 2013)
® ®
UM
(Bordes et al., 2012)

2011 2012
o L
RESCAL

(Nickel et al., 2011)

QQ/79/724

(Socher et al., 2013)

KG2E

(He et al., 2015)

TransR Poincaré
(Lin et al., 2015) (Nickel et al., 2017)

2015 2016

ComplEx
(Trouillon et al., 2014)

DistMult

(Yang et al., 2015)

ToruskE BoxE
(He et al., 2018) (Abboud et al., 2020)
® ®

2017

(Dettmers et al., 2018)

CS5982- Deen learnina with Granhe liaxiian Yo

RotatE
(Sun et al., 2019)

2018 2019

(Schlichtkrull et al., 2018)

TuckER

(Balazevic et al., 2019)
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Today: Different Models

We are going to learn about different KG embedding models
(shallow/transductive embs):

= Different models are...
= ...based on different geometric intuitions

= ...capture different types of relations (have different expressivity)

m-m-m

TransE —|lh +r —t htr e R®
h,t € RX,
TransR il r € R%, v v v v v
- MTt” MT' € Rd)(k
DistMult <hrt> h,t r € R* v x x x %

ComplEx Re(< h,r, t>) htre Ck v v v x v
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Beyond Simple Graphs: Knowledge Graphs
Knowledge Graph Completion: TransE



Bordes et al., Translating embeddings for modeling multi-relational data, NeurlPS 2013.

Transk

= Intuition: Translation
For a triplet (h,7,t), leth,r,t € R?
be embedding vectors.
* TranskE: h 4+ r = tif the given link exists else h +r # t

Entity scoring function: f,.(h,t) = —||h + r — t||

QQ/79/724

A valid

triplet has a higher score / loyer distance

0 Nationality

h/ Obamoa/"'U.S.A
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boldface

20


https://hal.archives-ouvertes.fr/file/index/docid/920777/filename/bordes13nips.pdf
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TransE: Contrastive/Triplet Loss

Algorithm 1 Learning TransE

input Training set S = {(h. /. t)}. entities and rel. sets £’ and L, margin -y, embeddings dim. k.

I: initialize ¢ < uniform(——=, =) foreach £ € L Initialize entities £ and relations e
2 f«— ¢/ ||£| foreach? € L. uniformly, then normalize.
3: e+ uniform(—%T \%) for eachentity e € E'| v is margin.
4: loop
5. e+ e/ | e| foreachentitye € F
6:  Spaten <sample(S, b) // sample a minibatch of size b , ,
7. Thaten < 0 // initialize the set of pairs of triplets Sample tnp!et (h', 4, t) that does
8 for (h.l.t) € Spuses, do not appear in the KG.
0: (', 0,t) %Sample(thTfrﬂ) /I sample a corrupted triplet d represents distance
10: Toateh — Toaten U {((hﬂ 0,t), (h, ¢, t’))} (negative of score)
11:  end for v
12:  Update embeddings w.r.t. Z Viy+dh+et)—dh'+21t)] N
positive negative
((h,f,t),(h’,f,t’))ETbatch sample sample
13: end loop

Contrastive loss: Favors lower distance (or higher
score) for valid triplets, high distance (or lower score)

for corrupted ones

CS5982- Deen learnina with Granhe liaxiian Yo
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Connectivity Patterns in KG

= Relations in a heterogeneous KG have different properties:

= Example:

= Symmetry: If the edge (h, "Roommate”, t) exists in KG, then the edge
(t,"Roommate”, h) should also exist.

= Inverse relation: If the edge (h," ", t) exists in KG, then the edge
(t,"Advisee", h) should also exist.

= Can we categorize these relation patterns?

= Are KG embedding methods (e.g., TransE) expressive enough to model
these patterns?

Q/79/24 CS5982- Deen learnina with Granhe liaxiian Yo 29



Four Relation Patterns

Symmetric (Antisymmetric) Relations:
r(h,t) = r(t,h) (r(h,t) > —r(t,h)) Vh,t
= Example:
= Symmetric: Family, Roommate
= Antisymmetric: Hypernym
Inverse Relations:

ry(h,t) = r(t, h)
= Example : (Advisor, Advisee)
= Composition (Transitive) Relations:
7"1(35:3’) /\rZ(in) = TB(-X;Z) V.X',y,Z
= Example: My mother’s husband is my father.
1-to-N relations:

r(h,ty),r(h,ty),..,r(h,t,) are all True.
= Example: ris “StudentsOf”

QQ/79/724 CS5982- Deen learnina with Granhe liaxiian Yo
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Antisymmetric Relations in TransE

= Antisymmetric Relations:
r(h,t) = —r(t,h) Vh,t
= Example: Hypernym
= TransE can model antisymmetric relations v/
*"h4+r=¢tbutt+r+h

h—t
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Inverse Relations in TransE

= Inverse Relations:
r,(h,t) = r(t, h)
" Example : (Advisor, Advisee)
= TransE can model inverse relations v
“"h+r,=t wecansetr;, = —r,

Q/7292/724 CS5982- Deen learnina with Granhe liaxiian Yo
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Compositionin Transk

= Composition (Transitive) Relations:
G, y) ANy (y,z) = r;(x,z) Vx,y,z
= Example: My mother’s husband is my father.

= TransE can model composition relationsv
I‘3 — 1‘1 + rz

Q/79/24 CS5982- Deen learnina with Granhe liaxiian Yo
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Limitation: Symmetric Relations

= Symmetric Relations:

r(h,t) = r(t,h) Vh,t

= Example: Family, Roommate

* TranskE cannot model symmetric relations %

Q/7292/724

on

vifr=0, h=t

For all h,t that satisfy r(h,t), r(t, h)
Is also True, which means
lh+r—t||=0and|[t+r—h| =
/ t 0. Thenr =0 and h = t, however h
h and t are two different entities and
should be mapped to different
locations.
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Limitation: 1-to-N Relations

= ]1-to-N Relations:

= Example: (h,7,t;) and (h,1, t,) both exist in the knowledge graph, e.g., r
is “StudentsOf”

" TranskE cannot model 1-to-N relations %
" £, and t, will map to the same vector, although they are different entities

“"t;=h+r=t
1 2 NI
=t FL contradictory!

Q/79/24 CS5982- Deen learnina with Granhe liaxiian Yo 27Q




Today: KG Completion Models

= What we learned so far:

B S g T

TransE —|lh +r — | h,tr e R®



Beyond Simple Graphs: Knowledge Graphs

Knowledge Graph Completion:
TransR



TransR

* TransE models translation of any relation in the same embedding
space.

= Can we design a new space for each relation and do translation in
relation-specific space?

= TransR: model entities as vectors in the entity space R? and model
each relation as vector in relation space r € R* with M, € R**¢ as the
projection matrix.

QQ/79/724 CS5982- Deen learnina with Granhe liaxiian Yo 21




TransR

= TransR: model entities as vectors in the entity space R? and model

each relation as vector in relation space r € R* with M, € R**? as the
projection matrix.

. hJ_ — Mrh, tJ_ — Mrt
= Score function: f,.(h,t) = —||h + r—t | to relation space R*!

QQ/79/724

Space of entities: R?

Q

Use M, to project
from entity space R

Space of relation r: R¥

CS5982- Deen learnina with Granhe liaxiian Yo
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Symmetric Relations in TransR

= Symmetric Relations: Note different

symmetric
r(h,t) = r(t,h) Vh,t relations may
= Example: Family, Roommate ;‘/Ia"e different
r

= TransR can model symmetric relations
r=0 h, =M,h=Mt=t,v

Space of entities: RY Space of relation r: R¥

Q/7292/724 CS5982- Deen learnina with Granhe liaxiian Yo 22



Antisymmetric Relations in TransR

= Antisymmetric Relations:

r(h,t) = —r(t,h) Vh,t
= Example: Hypernym

= TransR can model antisymmetric relations:

Q/79/24

r+0Mh+r=M.t ThenM,.t+r # M, hv

Space of entities: RY Space of relation r: R¥

CS5982- Deen learnina with Granhe liaxiian Yo
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1-to-N Relations in TransR

= 1-to-N Relations:

= Example: If (h,7,t;) and (h,1,t,) exist in the knowledge graph.
= TransR can model 1-to-N relations v’

= We canlearn M,.sothatt; = M.t;, = M,.t,

" Note that t; does not need to be equal to t,!

QQ/79/724 CS5982- Deen learnina with Granhe liaxiian Yo



Inverse Relations in TransR

" Inverse Relations:
r,(h,t) = r(t, h)
" Example : (Advisor, Advisee)
= TransR can model inverse relations
r,=-r,M, =M, ,ThenM,. t+r; =M, handM, h+r, =M, tv

Space of entities: R¢ Space of relation r: R¥

O.P ---------------------------------------------------------------- o tJ_
M —_ M rl]/r
S 2l 2
h h,

Q/79/24 CS5982- Deen learnina with Granhe liaxiian Yo
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Composition Relations in TransR

= Composition Relations:
G, y) ANy (y,z) = r3(x,z) Vx,y,z
= Example: My mother’s husband is my father.

= TransR can model composition relations

High-level intuition: TransR models a triplet with linear functions, they
are chainable.

Q/79/24 CS5982- Deen learnina with Granhe liaxiian Yo



Composition Relations in TransR

= Composition Relations:

G, y) ANy (y,z) = r3(x,z) Vx,y,z
Background:
Kernel space of a matrix M:

h € Ker(M),thenM-h =0
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Composition Relations in TransR

= Composition Relations:
o y) A (y,z) =2 1(x,z) Vx,y,z

Assume M;. g, =1, and M, g, =15
= Forry(x,y):
r(x,y) exists > M. X+ 11 =M,y =

y—X€eg;+ Ker(Mrl) >VEX+g+ Ker(MTl)
= Same for 1, (y, 2):
r(y,z) exists=> M,y + 1, = M.z =

Z—VEg,+ Ker(Mrz) —>ZEyYy+g,+ Ker(MTZ)
= Then, we have

ZEX+g81+8r+ Ker(Mrl) + Ker(MTZ)
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Composition Relations in TransR

= Composition Relations:
rn@y) A (y,z) = r3(x,z) Vx,y,z
WehavezE€EXx+ g1+ 85 + Ker(Mrl) + Ker(Mrz)
= Construct M, , s.t.
Ker(Mrs) = Ker(Mr1)+ Ker(Mrz)

= Since:

= dim (Ker(MTB)) > dim (Ker(Mrl))

= M, has the same shape as M4
We know M, exists!
* Setr; = M, (g; +82)
= We are done! We have M, x + 13 = M,.Z

Q/79/24 CS5982- Deen learnina with Granhe liaxiian Yo



Today: KG Completion Models

= What we learned so far:

B S g T

TransE —|lh +r — | h,tr e R®
h,t € R¥,
TransR Slimaer r € R, v v v v v
_ Mrt”

MT‘ € Rdxk
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Beyond Simple Graphs: Knowledge Graphs

Knowledge Graph Completion:
DistMult



Yang et al, Embedding Entities and Relations for Learning and Inference in Knowledge Bases, ICLR 2015

New Idea: Bilinear Modeling

= So far: The scoring function f..(h, t) is in
Transk and TransR

= |dea: Use bilinear modeling:
Score function: f,.(h,t) = h-A-t
h,t € R¥, A € RF*k

* Problem: Too general and prone to overfitting
= Matrix A is too expressive

= Fix: Limit A to be diagonal
= This is called DistMult

Q/79/24 CS5982- Deen learnina with Granhe liaxiian Yo 42
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New Idea: Bilinear Modeling

= DistMult: Entities & relations are vectors in R¥

= Score function:

fr(h,t) =< h,l‘,t>=2hi'rl’°ti
i

* hrteR i

L7, Sum
YA AN
Rl ~

Product

h t

Q/7292/724 CS5982- Deen learnina with Granhe liaxiian Yo
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DistMult

= DistMult: Entities and relations using vectors in R¥
= Score function: f,.(h,t) =< h,r,t > =) h; -1; - t;
= h,r,t e Rk

= Intuition of the score function: Can be viewed as a cosine similarity

betweenh-randt Hadamard

where h - risdefinedas [h-r]; = h; -7y  product

= Example:
f’;"(hJ tl) < O; fr(h, tz) > ()

QQ/79/724 CS5982- Deen learnina with Granhe liaxiian Yo



1-to-N Relations in DistMult

= 1-to-N Relations:
= Example: If (h,7,t;) and (h,1,t,) exist in the knowledge graph

= DistMult can model 1-to-N relations v
< h,l‘,t1 > =< h,r,tz >

h - r

Q/7292/724 CS5982- Deen learnina with Granhe liaxiian Yo
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Symmetric Relations in DistMult

= Symmetric Relations:
r(h,t) = r(t,h) Vh,t
= Example: Family, Roommate

= DistMult can naturally model symmetric relations v/
fr(h,t) =<h,r, t > = Ehl 1t =

l
<t h>=f(th)

Due to the commutative
property of multiplication.

Q/7292/724 CS5982- Deen learnina with Granhe liaxiian Yo
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Limitation: Antisymmetric Relations

= Antisymmetric Relations:
r(h,t) = —r(t,h) Vh,t
= Example: Hypernym

= DistMult cannot model antisymmetric relations
fr(ht) =<hrt>=<tr,h>=f.(t,h)
= r(h,t) and r(t, h) always have same score!

DistMult cannot differentiate between head entity and tail entity! This means that all relations
are modelled as symmetric regardless, i.e., even anti-symmetric relations will be represented
as symmetric.

Q/7292/724 CS5982- Deen learnina with Granhe liaxiian Yo
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Limitation: Inverse Relations

= Inverse Relations:
r,(h,t) = r(t, h)
" Example : (Advisor, Advisee)
= DistMult cannot model inverse relations %

= Assume DistMult does model inverse relations:
fr,(ht) =<hr,t>=<tr; ,h>=f (th)

" Thismeansr, =1y

= But semantically this does not make sense: The embedding of “Advisor”
should not be the same with “Advisee”.

QQ/79/724 CS5982- Deen learnina with Granhe liaxiian Yo 40



Today: KG Completion Models

= What we learned so far:

m-“-m

TransE —|lh +r —t|| h,tr € R¥
h,t € RX,
TransR —[IM.h +r r € R,
- M?"t” M‘r‘ = Rka

DistMult <hrt> h,tre Rk
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Beyond Simple Graphs: Knowledge Graphs

Knowledge Graph Completion:
ComplEXx



Trouillon et al, Complex Embeddings for Simple Link Prediction, ICML 2016

ComplEx

= Based on Distmult, ComplEx embeds entities and relations in Complex
vector space

= ComplEx: model entities and relations using vectors in C*

u e Cck
a € R
Re(u) b € R¥ Complex multiplication:
— ) [(a+ib)( +id)=(ac-bd) +i(a +b)]
u=a bi u=a-+ bi o
o Example multiplication:
AN =-6+17i %
\\\\ e (3 + 4i) * 3i
N

\\\ N /4I 4 3i = 4 *
SN *”r‘ 2
\ (3+4i)*2
Im(u) ==

Q/7292/724 CS5982- Deen learnina with Granhe liaxiian Yo [~y


http://proceedings.mlr.press/v48/trouillon16.pdf

ComplEx

= Based on Distmult, ComplEx embeds entities and relations in Complex
vector space
= ComplEx: model entities and relations using vectors in C*

= Score function f,.(h,t) = Re(}};h; - r; - t;)
fr(ht)

L7\ Sum
LA A N
R A

Inner Product

h t

CS5982- Deen learnina with Granhe liaxiian Yo
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Antisymmetric Relations in ComplEx

= Antisymmetric Relations:
r(h,t) = —r(t,h) Vh,t
= Example: Hypernym
= ComplEx can model antisymmetric relations v/
= The model is expressive enough to learn
= High f,.(h,t) = Re(2;h; - 1; - t})
" Low f.(t,7) =Re(X;t; - 1; - hy)
Due to the asymmetric modeling using complex conjugate.

Q/79/24 CS5982- Deen learnina with Granhe liaxiian Yo
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Symmetric Relations in ComplEx

= Symmetric Relations:
r(h,t) > r(t,h) Vh,t
= Example: Family, Roommate
= ComplEx can model symmetric relations v
= When Im(r) = 0, we have

- ﬂ(h, t) = Re(zi hi i A El) = Zi Re(ri . hi . fl)
= Zi I; - Re(hi . El) = Zi I; - Re(Bi . tl) = Zi Re(rl- y ill' y tl) :fr(t, h)

Q/79/24 CS5982- Deen learnina with Granhe liaxiian Yo



Inverse Relations in ComplEXx

= |Inverse Relations:
r,(h,t) = r(t, h)

" Example : (Advisor, Advisee)
= ComplEx can model inverse relations v/

"I =1

" Complex conjugate of

r, = argmax Re(< h,r,t >) isexactly r; = argmaxRe(< t, r,h >).
r r

Q/7292/724 CS5982- Deen learnina with Granhe liaxiian Yo
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Composition and 1-to-N

= Composition Relations:
G, y) A (y,z) =2 rs(x,z) Vx,y,z

= Example: My mother’s husband is my father.
= 1-to-N Relations:

= Example: If (h,7,t;) and (h,1,t,) exist in the knowledge graph
= ComplEx share the same property with DistMult

= Cannot model composition relations

= Can model 1-to-N relations

QQ/79/724 CS5982- Deen learnina with Granhe liaxiian Yo



Today: KG Completion Models

= What we learned so far:

m--m_-m

TransE —|lh +r —t|] h,tr € R¥
h,t € RX,
TransR il r € RY, v v v v v
_ Mrt” M, € RAXK
DistMult <hrt> h,tr € R* v x x x v

ComplEx Re(< h,r,t>) h,t,r e Ck v v v x v

Q/7292/724 CS5982- Deen learnina with Granhe liaxiian Yo cQ



Summary of Knowledge Graph

= Link prediction / Graph completion is one of the prominent tasks on
knowledge graphs

* |Introduce TransE / TransR / DistMult / ComplEx models with different
embedding space and expressiveness

= Next: Reasoning in Knowledge Graphs
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