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Recap: Heterogeneous Graphs
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▪ Heterogeneous graphs: a graph with multiple relation types

A

Target node

Input graph

𝑟1

𝑟1

𝑟2 𝑟2

𝑟3

𝑟3

𝑟1

C

B

E
F

D



Recap: Relational GCN
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▪ Learn from a graph with multiple relation types

▪ Use different neural network weights for different relation types!
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Today: Knowledge Graphs (KG)
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Knowledge in graph form:

▪ Capture entities, types, and relationships

▪ Nodes are entities

▪ Nodes are labeled with 

their types

▪ Edges between two nodes

capture relationships 

between entities

▪ KG is an example of a 

heterogeneous graph



Example: Bibliographic Networks
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▪ Node types: paper, title, author, conference, year 

▪ Relation types: pubWhere, pubYear, hasTitle, hasAuthor, cite



Example: Bio Knowledge Graphs
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▪ Node types: drug, disease, adverse event, protein, pathways

▪ Relation types: has_func, causes, assoc, treats, is_a



Knowledge Graphs in Practice
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Examples of knowledge graphs

▪ Google Knowledge Graph 

▪ Amazon Product Graph

▪ Facebook Graph API 

▪ IBM Watson 

▪ Microsoft Satori 

▪ Project Hanover/Literome 

▪ LinkedIn Knowledge Graph 

▪ Yandex Object Answer



Applications of Knowledge Graphs
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▪ Serving information: 



Applications of Knowledge Graphs
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▪ Question answering and conversation agents – the classic approach



Knowledge Graph Datasets
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▪ Publicly available KGs:

▪ FreeBase, Wikidata, Dbpedia, YAGO, NELL, etc.

▪ Common characteristics:

▪ Massive: Millions of nodes and edges

▪ Incomplete: Many true edges are missing

Given a massive KG, 
enumerating all the 

possible facts is 
intractable!

Can we predict plausible 
BUT missing links?



Example: Freebase
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▪ Freebase

▪ ~80 million entities

▪ ~38K relation types

▪ ~3 billion facts/triples

▪ Datasets: FB15k/FB15k-237

▪ A complete subset of Freebase, used by researchers to learn KG models

93.8% of persons from Freebase 
have no place of birth and 78.5% 
have no nationality!



Knowledge Graph Completion

Beyond Simple Graphs: Knowledge Graphs



KG Completion Task
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Given an enormous KG, can we complete the KG?

▪ For a given (head, relation), we predict missing tails.

▪ (Note this is slightly different from link prediction task)

missing relation: 
genre

genre

genre

genre
genre

genre

Influence

Influence
Influence

Influence

Influence

J.R.R Tolkien

C.S. Lewis

J.K. Rowling

Lloyd Alexander

Stephen King

Alan Poe

Science Fiction

Fantasy

Tragicomedy

Example task: predict the 

tail “Science Fiction” for 

(“J.K. Rowling”, “genre”)



Recap: “Shallow” Encoding
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▪ Simplest encoding approach: encoder is just an embedding-lookup

Dimension/size 

of embeddings

one column per node 

embedding 

matrix

embedding vector for a 

specific node



KG Representation

8/28/24 CS598: Deep Learning with Graphs, Jiaxuan You 15

▪ Edges in KG are represented as triples (ℎ, 𝑟, 𝑡)

▪ head (ℎ) has relation 𝑟  with tail (𝑡)

▪ Key Idea: 

▪ Model entities and relations in embedding space ℝ𝑑

▪ Associate entities and relations with shallow embeddings (not GNNs)

▪ Each node and each type of relation has a unique trainable embedding

▪ Given a triple (ℎ, 𝑟, 𝑡), the goal is that the embedding of (ℎ, 𝑟) should be 
close to the embedding of 𝑡.

▪ How to embed ℎ, 𝑟 ?

▪ How to define score function 𝑓𝑟 ℎ, 𝑡 ?
▪ Score 𝑓𝑟 is high if ℎ, 𝑟, 𝑡  exists, else 𝑓𝑟 is low



Discussion: How KG Methods Relate to GNNs?
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▪ In essence, KG methods are loss/score functions defined over node 
and edge embeddings

▪ Since KGs are heterogeneous graphs with different relation types, we 
study edge (type) embeddings for each edge type

▪ Shallow embeddings are used to obtain node/edge embeddings for 
simplicity, but more advanced deep encoders, e.g., (heterogeneous) 
GNNs, can be used



Many KG Embedding
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▪ Many KG embedding Models:



Today: Different Models
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We are going to learn about different KG embedding models 
(shallow/transductive embs):

▪ Different models are… 

▪ …based on different geometric intuitions

▪ …capture different types of relations (have different expressivity)

Model Score Embedding Sym. Antisym. Inv. Compos. 1-to-N

TransE − 𝐡 + 𝐫 − 𝐭 𝐡, 𝐭, 𝐫 ∈ ℝ𝑘
 ✓ ✓ ✓ 

TransR
−ԡ

ԡ
𝑴𝑟𝐡 + 𝐫

− 𝑴𝑟𝐭

𝐡, 𝐭 ∈ ℝ𝑘,
𝐫 ∈ ℝ𝑑, 
𝑴𝑟 ∈ ℝ𝑑×𝑘

✓ ✓ ✓ ✓ ✓

DistMult < 𝐡, 𝐫, 𝐭 > 𝐡, 𝐭, 𝐫 ∈ ℝ𝑘
✓    ✓

ComplEx Re(< 𝐡, 𝐫, ҧ𝐭 >) 𝐡, 𝐭, 𝐫 ∈ ℂ𝑘
✓ ✓ ✓  ✓



Knowledge Graph Completion: TransE

Beyond Simple Graphs: Knowledge Graphs



TransE
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▪ Intuition: Translation
For a triplet (ℎ, 𝑟, 𝑡), let 𝐡, 𝐫, 𝐭 ∈ ℝ𝑑  
be embedding vectors.

▪ TransE: 𝐡 + 𝐫 ≈ 𝐭 if the given link exists else 𝐡 + 𝐫 ≠ 𝐭

Entity scoring function: 𝑓𝑟 ℎ, 𝑡 = −||𝐡 + 𝐫 − 𝐭||

▪ A valid triplet has a higher score / lower distance

Bordes et al., Translating embeddings for modeling multi-relational data, NeurIPS 2013.

embedding 

vectors will 

appear in 

boldface

𝐡
𝐭

𝐫
Obama

Nationality
U.S.A

https://hal.archives-ouvertes.fr/file/index/docid/920777/filename/bordes13nips.pdf


TransE: Contrastive/Triplet Loss

8/28/24 CS598: Deep Learning with Graphs, Jiaxuan You 21

Initialize entities ℓ and relations 𝑒 

uniformly, then normalize.

γ is margin.

Sample triplet (ℎ’, ℓ, 𝑡) that does 

not appear in the KG.

Contrastive loss: Favors lower distance (or higher 

score) for valid triplets, high distance (or lower score) 

for corrupted ones

positive 

sample

negative 

sample

𝑑 represents distance 

(negative of score)



Connectivity Patterns in KG
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▪  Relations in a heterogeneous KG have different properties:

▪ Example:

▪ Symmetry: If the edge (ℎ, "Roommate", 𝑡) exists in KG, then the edge 
(𝑡, "Roommate", ℎ) should also exist.

▪ Inverse relation: If the edge (ℎ, "Advisor", 𝑡) exists in KG, then the edge 
𝑡, "Advisee", ℎ  should also exist.

▪ Can we categorize these relation patterns?

▪ Are KG embedding methods (e.g., TransE) expressive enough to model 
these patterns?



Four Relation Patterns
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▪ Symmetric (Antisymmetric) Relations:
𝑟 ℎ, 𝑡 ⇒ 𝑟 𝑡, ℎ  (𝑟(ℎ, 𝑡) ⇒ ¬𝑟(𝑡, ℎ)) ∀ℎ, 𝑡

▪ Example: 
▪ Symmetric: Family, Roommate
▪ Antisymmetric: Hypernym

▪ Inverse Relations:
𝑟2(ℎ, 𝑡) ⇒ 𝑟1(𝑡, ℎ)

▪ Example : (Advisor, Advisee)

▪ Composition (Transitive) Relations:
𝑟1 𝑥, 𝑦 ∧ 𝑟2 𝑦, 𝑧 ⇒ 𝑟3 𝑥, 𝑧  ∀𝑥, 𝑦, 𝑧

▪ Example: My mother’s husband is my father.

▪ 1-to-N relations:
𝑟 ℎ, 𝑡1 , 𝑟 ℎ, 𝑡2 , … , 𝑟(ℎ, 𝑡𝑛) are all True.

▪ Example: 𝑟 is “StudentsOf” 



Antisymmetric Relations in TransE
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▪ Antisymmetric Relations:
𝑟(ℎ, 𝑡) ⇒ ¬𝑟(𝑡, ℎ) ∀ℎ, 𝑡

▪ Example: Hypernym

▪ TransE can model antisymmetric relations ✓

▪ 𝐡 + 𝐫 = 𝐭, but 𝐭 + 𝐫 ≠ 𝐡

𝐡
𝐫

𝐭

𝐫



Inverse Relations in TransE
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▪ Inverse Relations:
𝑟2(ℎ, 𝑡) ⇒ 𝑟1(𝑡, ℎ)

▪ Example : (Advisor, Advisee)

▪ TransE can model inverse relations ✓

▪ 𝐡 + 𝐫𝟐 = 𝐭, we can set 𝐫1 = −𝐫2

𝐡
𝐫𝟏 𝐭
𝐫𝟐



Composition in TransE
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▪ Composition (Transitive) Relations:
𝑟1 𝑥, 𝑦 ∧ 𝑟2 𝑦, 𝑧 ⇒ 𝑟3 𝑥, 𝑧  ∀𝑥, 𝑦, 𝑧

▪ Example: My mother’s husband is my father.

▪ TransE can model composition relations✓
𝐫3 = 𝐫1 + 𝐫2

𝐱

𝐫1
𝐫2

𝐫3



Limitation: Symmetric Relations
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▪ Symmetric Relations:
𝑟 ℎ, 𝑡 ⇒ 𝑟 𝑡, ℎ  ∀ℎ, 𝑡

▪ Example: Family, Roommate

▪ TransE cannot model symmetric relations 
     only if 𝐫 = 0, 𝐡 = 𝐭

𝐡
𝐭𝐫

For all ℎ, 𝑡 that satisfy 𝑟(ℎ, 𝑡), 𝑟(𝑡, ℎ) 

is also True, which means 

𝐡 + 𝐫 − 𝐭 = 0 and 𝐭 + 𝐫 − 𝐡 =
0. Then 𝐫 = 0 and 𝐡 = 𝐭, however ℎ 

and 𝑡 are two different entities and 

should be mapped to different 

locations.



Limitation: 1-to-N Relations
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▪ 1-to-N Relations:

▪ Example: (ℎ, 𝑟, 𝑡1) and (ℎ, 𝑟, 𝑡2) both exist in the knowledge graph, e.g., 𝑟 
is “StudentsOf”

▪ TransE cannot model 1-to-N relations 

▪ 𝐭1 and 𝐭2 will map to the same vector, although they are different entities

▪ 𝐭1 = 𝐡 + 𝐫 = 𝐭2

▪ 𝐭1 ≠ 𝐭2 contradictory!

𝐡

𝐭1

𝐭2
𝐫

𝐫



Today: KG Completion Models
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▪ What we learned so far:
Model Score Embedding Sym. Antisym. Inv. Compos. 1-to-N

TransE − 𝐡 + 𝐫 − 𝐭 𝐡, 𝐭, 𝐫 ∈ ℝ𝑘
 ✓ ✓ ✓ 



Knowledge Graph Completion:
TransR

Beyond Simple Graphs: Knowledge Graphs



TransR
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▪ TransE models translation of any relation in the same embedding 
space.

▪ Can we design a new space for each relation and do translation in 
relation-specific space?

▪ TransR: model entities as vectors in the entity space ℝ𝑑  and model 
each relation as vector in relation space 𝐫 ∈ ℝ𝑘 with 𝐌𝑟 ∈ ℝ𝑘×𝑑  as the 
projection matrix.



TransR
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▪ TransR: model entities as vectors in the entity space ℝ𝑑  and model 
each relation as vector in relation space 𝐫 ∈ ℝ𝑘  with 𝐌𝑟 ∈ ℝ𝑘×𝑑  as the 
projection matrix.

▪ 𝐡⊥ = 𝐌𝑟𝐡, 𝐭⊥ = 𝐌𝑟𝐭

▪ Score function: 𝑓𝑟 ℎ, 𝑡 = −||𝐡⊥ + 𝐫 − 𝐭⊥||

Use 𝐌𝒓 to project 

from entity space ℝ𝒅 

to relation space ℝ𝑘!

𝐡 𝐡⊥

𝐭⊥

𝐭

𝐫

Space of relation 𝒓: ℝ𝒌  Space of entities: ℝ𝒅

𝐌𝒓 



Symmetric Relations in TransR
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▪ Symmetric Relations:
𝑟 ℎ, 𝑡 ⇒ 𝑟 𝑡, ℎ  ∀ℎ, 𝑡

▪ Example: Family, Roommate

▪ TransR can model symmetric relations

𝐫 = 0, 𝐡⊥ = 𝐌𝑟𝐡 = 𝐌𝑟𝐭 = 𝐭⊥✓

Note different 

symmetric 

relations may 

have different 

𝐌𝒓

𝐡 𝐭⊥, 𝐡⊥

𝐭

𝐌𝑟

We can map 𝒉 and 𝒕 to the same location on the 

space of relation 𝒓. 

𝒉 and 𝒕 are still different in the entity space.

Space of relation 𝒓: ℝ𝒌  Space of entities: ℝ𝒅



Antisymmetric Relations in TransR
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▪ Antisymmetric Relations:
𝑟(ℎ, 𝑡) ⇒ ¬𝑟(𝑡, ℎ) ∀ℎ, 𝑡

▪ Example: Hypernym

▪ TransR can model antisymmetric relations:

𝐫 ≠ 0, 𝐌𝑟𝐡 + 𝐫 = 𝐌𝑟𝐭, Then 𝐌𝑟𝐭 + 𝐫 ≠ 𝐌𝑟𝐡✓

𝐡 𝐡⊥

𝐭

𝐌𝑟

Space of relation 𝒓: ℝ𝒌  Space of entities: ℝ𝒅



1-to-N Relations in TransR

8/28/24 CS598: Deep Learning with Graphs, Jiaxuan You 35

▪ 1-to-N Relations:

▪ Example: If (ℎ, 𝑟, 𝑡1) and (ℎ, 𝑟, 𝑡2) exist in the knowledge graph.

▪ TransR can model 1-to-N relations ✓

▪ We can learn 𝐌𝑟 so that 𝐭⊥ = 𝐌𝑟𝐭1 = 𝐌𝑟𝐭2 

▪ Note that 𝐭1 does not need to be equal to 𝐭2!

𝐡
𝐡⊥

𝐭⊥

𝐭1

𝐭2

𝐫



Inverse Relations in TransR
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▪ Inverse Relations:
𝑟2(ℎ, 𝑡) ⇒ 𝑟1(𝑡, ℎ)

▪ Example : (Advisor, Advisee)

▪ TransR can model inverse relations

𝐫2 = −𝐫1, 𝐌𝑟1
= 𝐌𝑟2

, Then 𝐌𝑟1
𝐭 + 𝐫𝟏 = 𝐌𝑟1

𝐡 and 𝐌𝑟2
𝐡 + 𝐫𝟐 = 𝐌𝑟2

𝐭✓

𝐡 𝐡⊥

𝐭

𝐌𝑟1
= 𝐌𝑟2

Space of relation 𝒓: ℝ𝒌  Space of entities: ℝ𝒅

𝐭⊥

𝐫𝟏 𝐫𝟐



Composition Relations in TransR
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▪ Composition Relations:
𝑟1 𝑥, 𝑦 ∧ 𝑟2 𝑦, 𝑧 ⇒ 𝑟3 𝑥, 𝑧  ∀𝑥, 𝑦, 𝑧

▪ Example: My mother’s husband is my father.

▪ TransR can model composition relations

High-level intuition: TransR models a triplet with linear functions, they 
are chainable.



Composition Relations in TransR
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▪ Composition Relations:
𝑟1 𝑥, 𝑦 ∧ 𝑟2 𝑦, 𝑧 ⇒ 𝑟3 𝑥, 𝑧  ∀𝑥, 𝑦, 𝑧

Background: 

Kernel space of a matrix 𝐌: 

𝐡 ∈ Ker 𝐌 , then 𝐌 ⋅ 𝐡 = 𝟎

𝐡
𝐌

Ker 𝐌

𝟎



Composition Relations in TransR
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▪ Composition Relations:
𝑟1 𝑥, 𝑦 ∧ 𝑟2 𝑦, 𝑧 ⇒ 𝑟3 𝑥, 𝑧  ∀𝑥, 𝑦, 𝑧

Assume 𝐌𝑟1
𝐠1 = 𝐫1 and 𝐌𝑟2

𝐠2 = 𝐫2

▪ For 𝑟1 𝑥, 𝑦 :

𝑟1 𝑥, 𝑦  exists ⇒ 𝐌𝑟1
𝐱 + 𝐫𝟏 = 𝐌𝑟1

𝐲 ⇒
𝐲 − 𝐱 ∈ 𝐠1 + Ker 𝐌𝑟1

⇒ 𝐲 ∈ 𝐱 + 𝐠𝟏 + Ker 𝐌𝑟1

▪ Same for 𝑟2 𝑦, 𝑧 :

𝑟2 𝑦, 𝑧  exists⇒ 𝐌𝑟2
𝐲 + 𝐫𝟐 = 𝐌𝑟2

𝐳 ⇒
𝐳 − 𝐲 ∈ 𝐠2 + Ker 𝐌𝑟2

⇒ 𝐳 ∈ 𝐲 + 𝐠𝟐 + Ker 𝐌𝑟2

▪ Then, we have 
𝐳 ∈ 𝐱 + 𝐠𝟏 + 𝐠𝟐 + Ker 𝐌𝑟1

+ Ker 𝐌𝑟2



Composition Relations in TransR
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▪ Composition Relations:
𝑟1 𝑥, 𝑦 ∧ 𝑟2 𝑦, 𝑧 ⇒ 𝑟3 𝑥, 𝑧  ∀𝑥, 𝑦, 𝑧

We have 𝐳 ∈ 𝐱 + 𝐠𝟏 + 𝐠𝟐 + Ker 𝐌𝑟1
+ Ker 𝐌𝑟2

▪ Construct 𝐌𝑟3
, s.t. 

Ker 𝐌𝑟3
= Ker 𝐌𝑟1

+ Ker 𝐌𝑟2

▪ Since:

▪ dim Ker 𝐌𝑟3
≥ dim Ker 𝐌𝑟1

 

▪ 𝐌𝑟3
 has the same shape as 𝐌𝑟1

We know 𝐌𝑟3
 exists!

▪ Set 𝐫3 = 𝐌𝑟3
𝐠1 + 𝐠2

▪ We are done! We have 𝐌𝑟3
𝐱 + 𝐫𝟑 = 𝐌𝑟3

𝐳



Today: KG Completion Models
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▪ What we learned so far:
Model Score Embedding Sym. Antisym. Inv. Compos. 1-to-N

TransE − 𝐡 + 𝐫 − 𝐭 𝐡, 𝐭, 𝐫 ∈ ℝ𝑘
 ✓ ✓ ✓ 

TransR
−ԡ

ԡ
𝑴𝑟𝐡 + 𝐫

− 𝑴𝑟𝐭

𝐡, 𝐭 ∈ ℝ𝑘,
𝐫 ∈ ℝ𝑑, 
𝑴𝑟 ∈ ℝ𝑑×𝑘

✓ ✓ ✓ ✓ ✓



Knowledge Graph Completion:
DistMult

Beyond Simple Graphs: Knowledge Graphs



New Idea: Bilinear Modeling
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▪ So far: The scoring function 𝑓𝑟(ℎ, 𝑡) is negative of L1 / L2 distance in 
TransE and TransR

▪ Idea: Use bilinear modeling:

Score function: 𝑓𝑟 ℎ, 𝑡 = ℎ ⋅ 𝐴 ⋅ 𝑡
 𝐡, 𝐭 ∈ ℝ𝑘 , 𝐀 ∈ ℝ𝑘×𝑘

▪ Problem: Too general and prone to overfitting

▪ Matrix A is too expressive

▪ Fix: Limit A to be diagonal

▪ This is called DistMult

Yang et al, Embedding Entities and Relations for Learning and Inference in Knowledge Bases, ICLR 2015

https://arxiv.org/pdf/1412.6575


New Idea: Bilinear Modeling
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▪ DistMult: Entities & relations are vectors in ℝ𝑘

▪ Score function:

𝑓𝑟 ℎ, 𝑡 =< 𝐡, 𝐫, 𝐭 > = 

𝑖

𝐡𝑖 ⋅ 𝐫𝑖 ⋅ 𝐭𝑖

▪ 𝐡, 𝐫, 𝐭 ∈ ℝ𝑘 𝑓𝑟(ℎ, 𝑡)

Sum

Product

𝐫

𝐡 𝐭



DistMult
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▪ DistMult: Entities and relations using vectors in ℝ𝑘

▪ Score function: 𝑓𝑟 ℎ, 𝑡 =< 𝐡, 𝐫, 𝐭 > = σ𝑖 𝐡𝑖 ⋅ 𝐫𝑖 ⋅ 𝐭𝑖

▪ 𝐡, 𝐫, 𝐭 ∈ ℝ𝑘

▪ Intuition of the score function: Can be viewed as a cosine similarity 
between 𝐡 ⋅ 𝐫 and 𝐭

 where 𝐡 ⋅ 𝐫 is defined as 𝒉 ⋅ 𝒓 𝒊 = 𝒉𝒊 ⋅ 𝒓𝒊

▪ Example:
𝑓𝑟 ℎ, 𝑡1 < 0, 𝑓𝑟 ℎ, 𝑡2 > 0

Hadamard 

product

𝒉 ⋅ 𝒓

𝐭1

𝐭2



1-to-N Relations in DistMult
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▪ 1-to-N Relations:

▪ Example: If (ℎ, 𝑟, 𝑡1) and (ℎ, 𝑟, 𝑡2) exist in the knowledge graph

▪ DistMult can model 1-to-N relations ✓ 
< 𝐡, 𝐫, 𝐭1 > = < 𝐡, 𝐫, 𝐭2 >

𝐡 ⋅ 𝐫

𝐭1

𝐭2



Symmetric Relations in DistMult
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▪ Symmetric Relations:
𝑟 ℎ, 𝑡 ⇒ 𝑟 𝑡, ℎ  ∀ℎ, 𝑡

▪ Example: Family, Roommate

▪ DistMult can naturally model symmetric relations ✓ 

𝑓𝑟 ℎ, 𝑡 =< 𝐡, 𝐫, 𝐭 > = 

𝑖

𝐡𝑖 ⋅ 𝐫𝑖 ⋅ 𝐭𝑖 =

< 𝐭, 𝐫, 𝐡 > = 𝑓𝑟(𝑡, ℎ)

Due to the commutative 

property of multiplication.



Limitation: Antisymmetric Relations
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▪ Antisymmetric Relations:
𝑟(ℎ, 𝑡) ⇒ ¬𝑟(𝑡, ℎ) ∀ℎ, 𝑡

▪ Example: Hypernym

▪ DistMult cannot model antisymmetric relations

𝑓𝑟 ℎ, 𝑡 =< 𝐡, 𝐫, 𝐭 > = < 𝐭, 𝐫, 𝐡 >= 𝑓𝑟(𝑡, ℎ) 

▪ 𝑟(ℎ, 𝑡) and 𝑟(𝑡, ℎ) always have same score!

DistMult cannot differentiate between head entity and tail entity! This means that all relations 

are modelled as symmetric regardless, i.e., even anti-symmetric relations will be represented 

as symmetric.



Limitation: Inverse Relations
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▪ Inverse Relations:
𝑟2(ℎ, 𝑡) ⇒ 𝑟1(𝑡, ℎ)

▪ Example : (Advisor, Advisee)

▪ DistMult cannot model inverse relations 

▪ Assume DistMult does model inverse relations:
𝑓𝑟2

ℎ, 𝑡 =< 𝐡, 𝐫2, 𝐭 > = < 𝐭, 𝐫𝟏 , 𝐡 >= 𝑓𝑟1
𝑡, ℎ

▪ This means 𝐫2 = 𝐫1

▪ But semantically this does not make sense: The embedding of “Advisor” 
should not be the same with “Advisee”.



Today: KG Completion Models
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▪ What we learned so far:
Model Score Embedding Sym. Antisym. Inv. Compos. 1-to-N

TransE − 𝐡 + 𝐫 − 𝐭 𝐡, 𝐭, 𝐫 ∈ ℝ𝑘
 ✓ ✓ ✓ 

TransR
−ԡ

ԡ
𝑴𝑟𝐡 + 𝐫

− 𝑴𝑟𝐭

𝐡, 𝐭 ∈ ℝ𝑘,
𝐫 ∈ ℝ𝑑, 
𝑴𝑟 ∈ ℝ𝑑×𝑘

✓ ✓ ✓ ✓ ✓

DistMult < 𝐡, 𝐫, 𝐭 > 𝐡, 𝐭, 𝐫 ∈ ℝ𝑘
✓    ✓



Knowledge Graph Completion:
ComplEx

Beyond Simple Graphs: Knowledge Graphs



ComplEx
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▪ Based on Distmult, ComplEx embeds entities and relations in Complex 
vector space

▪ ComplEx: model entities and relations using vectors in ℂ𝑘

Trouillon et al, Complex Embeddings for Simple Link Prediction, ICML 2016

𝐮 = 𝐚 + 𝐛𝑖

Re(𝐮)

Im(𝐮)

𝐮 ∈ ℂ𝑘

𝐚 ∈ ℝ𝑘

𝐛 ∈ ℝ𝑘

ഥ𝐮 = 𝐚 − 𝐛𝑖

Complex multiplication:

Example multiplication:
=-6+17i

http://proceedings.mlr.press/v48/trouillon16.pdf


ComplEx
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▪ Based on Distmult, ComplEx embeds entities and relations in Complex 
vector space

▪ ComplEx: model entities and relations using vectors in ℂ𝑘

▪ Score function 𝑓𝑟 ℎ, 𝑡 = Re(σ𝑖 𝐡𝑖 ⋅ 𝐫𝑖 ⋅ ҧ𝐭𝑖)

𝑓𝑟(ℎ, 𝑡)

Sum

Inner Product

𝐫

𝐡 ҧ𝐭



Antisymmetric Relations in ComplEx
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▪ Antisymmetric Relations:
𝑟(ℎ, 𝑡) ⇒ ¬𝑟(𝑡, ℎ) ∀ℎ, 𝑡

▪ Example: Hypernym

▪ ComplEx can model antisymmetric relations ✓

▪ The model is expressive enough to learn 

▪ High 𝑓𝑟 ℎ, 𝑡 = Re(σ𝑖 𝐡𝑖 ⋅ 𝐫𝑖 ⋅ ҧ𝐭𝑖)

▪ Low 𝑓𝑟 𝑡, 𝑟 = Re(σ𝑖 𝒕𝑖 ⋅ 𝐫𝑖 ⋅ ഥ𝒉𝑖)

Due to the asymmetric modeling using complex conjugate.



Symmetric Relations in ComplEx
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▪ Symmetric Relations:
𝑟 ℎ, 𝑡 ⇒ 𝑟 𝑡, ℎ  ∀ℎ, 𝑡

▪ Example: Family, Roommate

▪ ComplEx can model symmetric relations ✓

▪ When Im 𝐫 = 0, we have

▪ 𝑓𝑟 ℎ, 𝑡 = Re σ𝑖 𝐡𝑖 ⋅ 𝐫𝑖 ⋅ ҧ𝐭𝑖 = σ𝑖 Re 𝐫𝑖 ⋅ 𝐡𝑖 ⋅ ҧ𝐭𝑖

= σ𝑖 𝐫𝑖 ⋅ Re 𝐡𝑖 ⋅ ҧ𝐭𝑖 = σ𝑖 𝐫𝑖 ⋅ Re ҧ𝐡𝑖 ⋅ 𝐭𝑖 = σ𝑖 Re 𝐫𝑖 ⋅ ҧ𝐡𝑖 ⋅ 𝐭𝑖 = 𝑓𝑟(𝑡, ℎ)



Inverse Relations in ComplEx
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▪ Inverse Relations:
𝑟2(ℎ, 𝑡) ⇒ 𝑟1(𝑡, ℎ)

▪ Example : (Advisor, Advisee)

▪ ComplEx can model inverse relations ✓

▪ 𝐫1 = ҧ𝐫2

▪ Complex conjugate of 

𝐫2 = argmax
𝐫

Re(< 𝐡, 𝐫, ҧ𝐭 >) is exactly 𝐫1 = argmax
𝐫

Re(< 𝐭, 𝐫, ҧ𝐡 >).



Composition and 1-to-N
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▪ Composition Relations:
𝑟1 𝑥, 𝑦 ∧ 𝑟2 𝑦, 𝑧 ⇒ 𝑟3 𝑥, 𝑧  ∀𝑥, 𝑦, 𝑧

▪ Example: My mother’s husband is my father.

▪ 1-to-N Relations:

▪ Example: If (ℎ, 𝑟, 𝑡1) and (ℎ, 𝑟, 𝑡2) exist in the knowledge graph

▪ ComplEx share the same property with DistMult

▪ Cannot model composition relations

▪ Can model 1-to-N relations



Today: KG Completion Models
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▪ What we learned so far:

Model Score Embedding Sym. Antisym. Inv. Compos. 1-to-N

TransE − 𝐡 + 𝐫 − 𝐭 𝐡, 𝐭, 𝐫 ∈ ℝ𝑘
 ✓ ✓ ✓ 

TransR
−ԡ

ԡ
𝑴𝑟𝐡 + 𝐫

− 𝑴𝑟𝐭

𝐡, 𝐭 ∈ ℝ𝑘,
𝐫 ∈ ℝ𝑑, 
𝑴𝑟 ∈ ℝ𝑑×𝑘

✓ ✓ ✓ ✓ ✓

DistMult < 𝐡, 𝐫, 𝐭 > 𝐡, 𝐭, 𝐫 ∈ ℝ𝑘
✓    ✓

ComplEx Re(< 𝐡, 𝐫, ҧ𝐭 >) 𝐡, 𝐭, 𝐫 ∈ ℂ𝑘
✓ ✓ ✓  ✓



Summary of Knowledge Graph
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▪ Link prediction / Graph completion is one of the prominent tasks on 
knowledge graphs

▪ Introduce TransE / TransR / DistMult / ComplEx models with different
embedding space and expressiveness

▪ Next: Reasoning in Knowledge Graphs
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