Beyond Simple Graphs: Knowledge Graphs

Jiaxuan You

Assistant Professor at UIUC CDS

CS598: Deep Learning with Graphs, 2024 Fall https://ulab-uiuc.github.io/CS598/

Recap: Heterogeneous Graphs

Heterogeneous graphs: a graph with multiple relation types

Input graph

Recap: Relational GCN

- Learn from a graph with multiple relation types
- Use different neural network weights for different relation types!
 Aggregation

Today: Knowledge Graphs (KG)

Knowledge in graph form:

- Capture entities, types, and relationships
- Nodes are entities
- Nodes are labeled with

their types

 Edges between two nodes capture relationships

between entities

 KG is an example of a heterogeneous graph

Example: Bibliographic Networks

- Node types: paper, title, author, conference, year
- Relation types: pubWhere, pubYear, hasTitle, hasAuthor, cite

Example: Bio Knowledge Graphs

- Node types: drug, disease, adverse event, protein, pathways
- Relation types: has_func, causes, assoc, treats, is_a

Knowledge Graphs in Practice

Examples of knowledge graphs

- Google Knowledge Graph
- Amazon Product Graph
- Facebook Graph API
- IBM Watson
- Microsoft Satori
- Project Hanover/Literome
- LinkedIn Knowledge Graph
- Yandex Object Answer

Applications of Knowledge Graphs

Serving information:

Applications of Knowledge Graphs

Question answering and conversation agents – the classic approach

Knowledge Graph Datasets

Publicly available KGs:

FreeBase, Wikidata, Dbpedia, YAGO, NELL, etc.

Common characteristics:

- Massive: Millions of nodes and edges
- Incomplete: Many true edges are missing

Given a massive KG, enumerating all the possible facts is intractable!

Can we predict plausible BUT missing links?

Example: Freebase

Freebase

- ~80 million entities
- ~38K relation types
- ~3 billion facts/triples

Freebase

93.8% of persons from Freebase have no place of birth and 78.5% have no nationality!

- Datasets: FB15k/FB15k-237
 - A complete subset of Freebase, used by researchers to learn KG models

Dataset	Entities	Relations	Total Edges
FB15k	14,951	1,345	592,213
FB15k-237	14,505	237	310,079

Beyond Simple Graphs: Knowledge Graphs
Knowledge Graph Completion

KG Completion Task

Given an enormous KG, can we complete the KG?

- For a given (head, relation), we predict missing tails.
 - (Note this is slightly different from link prediction task)

Recap: "Shallow" Encoding

Simplest encoding approach: encoder is just an embedding-lookup

KG Representation

- Edges in KG are represented as triples (h, r, t)
 - head (h) has relation (r) with tail (t)
- Key Idea:
 - Model entities and relations in embedding space \mathbb{R}^d
 - Associate entities and relations with shallow embeddings (not GNNs)
 - Each node and each type of relation has a unique trainable embedding
 - Given a triple (h, r, t), the goal is that the embedding of (h, r) should be close to the embedding of t.
 - How to embed (h, r)?
 - How to define score function $f_r(h, t)$?
 - Score f_r is high if (h, r, t) exists, else f_r is low

Discussion: How KG Methods Relate to GNNs?

- In essence, KG methods are loss/score functions defined over node and edge embeddings
- Since KGs are heterogeneous graphs with different relation types, we study edge (type) embeddings for each edge type
- Shallow embeddings are used to obtain node/edge embeddings for simplicity, but more advanced deep encoders, e.g., (heterogeneous)
 GNNs, can be used

Many KG Embedding

Manv KG embedding Models:

8/28/24

Today: Different Models

We are going to learn about different KG embedding models (shallow/transductive embs):

- Different models are...
 - ...based on different geometric intuitions
 - ...capture different types of relations (have different expressivity)

Model	Score	Embedding	Sym.	Antisym.	Inv.	Compos.	1-to-N
TransE	$-\ \mathbf{h}+\mathbf{r}-\mathbf{t}\ $	h, t, $\mathbf{r} \in \mathbb{R}^k$	×	\checkmark	\checkmark	\checkmark	×
TransR	$-\ \boldsymbol{M}_r\mathbf{h}+\mathbf{r}\\-\boldsymbol{M}_r\mathbf{t}\ $	h, t $\in \mathbb{R}^k$, r $\in \mathbb{R}^d$, $M_r \in \mathbb{R}^{d \times k}$	\checkmark	✓	~	\checkmark	✓
DistMult	< h, r, t >	h, t, $\mathbf{r} \in \mathbb{R}^k$	\checkmark	×	×	×	\checkmark
ComplEx	Re(< h , r , t >)	h , t , $\mathbf{r} \in \mathbb{C}^k$	\checkmark	\checkmark	\checkmark	×	\checkmark

Beyond Simple Graphs: Knowledge Graphs
Knowledge Graph Completion: TransE

TransE

Intuition: Translation

For a triplet (h, r, t), let $\mathbf{h}, \mathbf{r}, \mathbf{t} \in \mathbb{R}^d$ be embedding vectors. embedding vectors will appear in boldface

• TransE: $\mathbf{h} + \mathbf{r} \approx \mathbf{t}$ if the given link exists else $\mathbf{h} + \mathbf{r} \neq \mathbf{t}$

Entity scoring function: $f_r(h, t) = -||\mathbf{h} + \mathbf{r} - \mathbf{t}||$

A valid triplet has a higher score / lower distance

TransE: Contrastive/Triplet Loss

Connectivity Patterns in KG

- Relations in a heterogeneous KG have different properties:
 - Example:
 - Symmetry: If the edge (h, "Roommate", t) exists in KG, then the edge (t, "Roommate", h) should also exist.
 - Inverse relation: If the edge (h, "Advisor", t) exists in KG, then the edge (t, "Advisee", h) should also exist.
- Can we categorize these relation patterns?
- Are KG embedding methods (e.g., TransE) expressive enough to model these patterns?

Four Relation Patterns

Symmetric (Antisymmetric) Relations:

$$r(h,t) \Rightarrow r(t,h) \ (r(h,t) \Rightarrow \neg r(t,h)) \ \forall h,t$$

- Example:
 - Symmetric: Family, Roommate
 - Antisymmetric: Hypernym
- Inverse Relations:

$$r_2(h,t) \Rightarrow r_1(t,h)$$

- Example : (Advisor, Advisee)
- Composition (Transitive) Relations:

$$r_1(x,y) \wedge r_2(y,z) \Rightarrow r_3(x,z) \quad \forall x, y, z$$

- **Example**: My mother's husband is my father.
- 1-to-N relations:

$$r(h, t_1), r(h, t_2), \dots, r(h, t_n)$$
 are all True

Example: r is "StudentsOf"

Antisymmetric Relations in TransE

Antisymmetric Relations:

$$r(h,t) \Rightarrow \neg r(t,h) \quad \forall h,t$$

- Example: Hypernym
- TransE can model antisymmetric relations
 - $\mathbf{h} + \mathbf{r} = \mathbf{t}$, but $\mathbf{t} + \mathbf{r} \neq \mathbf{h}$

Inverse Relations in TransE

Inverse Relations:

$$r_2(h,t) \Rightarrow r_1(t,h)$$

- Example : (Advisor, Advisee)
- TransE can model inverse relations
 - $h + r_2 = t$, we can set $r_1 = -r_2$

Composition in TransE

Composition (Transitive) Relations:

 $r_1(x, y) \wedge r_2(y, z) \Rightarrow r_3(x, z) \quad \forall x, y, z$

Example: My mother's husband is my father.

TransE can model composition relations

 $\mathbf{r}_3 = \mathbf{r}_1 + \mathbf{r}_2$

Limitation: Symmetric Relations

Symmetric Relations:

$$r(h,t) \Rightarrow r(t,h) \quad \forall h,t$$

- **Example:** Family, Roommate
- TransE cannot model symmetric relations × only if r = 0, h = t

For all *h*, *t* that satisfy r(h, t), r(t, h)is also True, which means $\|\mathbf{h} + \mathbf{r} - \mathbf{t}\| = 0$ and $\|\mathbf{t} + \mathbf{r} - \mathbf{h}\| = 0$. Then $\mathbf{r} = 0$ and $\mathbf{h} = \mathbf{t}$, however *h* and *t* are two different entities and should be mapped to different locations.

Limitation: 1-to-N Relations

1-to-N Relations:

Example: (h, r, t₁) and (h, r, t₂) both exist in the knowledge graph, e.g., r is "StudentsOf"

TransE cannot model 1-to-N relations ×

- t₁ and t₂ will map to the same vector, although they are different entities
- $t_1 = h + r = t_2$ • $t_1 \neq t_2$

contradictory!

Today: KG Completion Models

• What we learned so far:

Model	Score	Embedding	Sym.	Antisym.	Inv.	Compos.	1-to-N
TransE	$-\ \mathbf{h}+\mathbf{r}-\mathbf{t}\ $	h , t , $\mathbf{r} \in \mathbb{R}^k$	×	\checkmark	\checkmark	\checkmark	×

Beyond Simple Graphs: Knowledge Graphs Knowledge Graph Completion: TransR

TransR

- TransE models translation of any relation in the same embedding space.
- Can we design a new space for each relation and do translation in relation-specific space?
- TransR: model entities as vectors in the entity space \mathbb{R}^d and model each relation as vector in relation space $\mathbf{r} \in \mathbb{R}^k$ with $\mathbf{M}_r \in \mathbb{R}^{k \times d}$ as the projection matrix.

TransR

• TransR: model entities as vectors in the entity space \mathbb{R}^d and model each relation as vector in relation space $\mathbf{r} \in \mathbb{R}^k$ with $\mathbf{M}_r \in \mathbb{R}^{k \times d}$ as the projection matrix.

•
$$\mathbf{h}_{\perp} = \mathbf{M}_{r}\mathbf{h}$$
, $\mathbf{t}_{\perp} = \mathbf{M}_{r}\mathbf{t}$

• Score function: $f_r(h, t) = -||\mathbf{h}_{\perp} + \mathbf{r} - \mathbf{t}_{\perp}||$

Use M_r to project from entity space \mathbb{R}^d to relation space \mathbb{R}^k !

Symmetric Relations in TransR

Symmetric Relations:

$$r(h,t) \Rightarrow r(t,h) \quad \forall h,t$$

Example: Family, Roommate

TransR can model symmetric relations

Antisymmetric Relations in TransR

Antisymmetric Relations:

$$r(h,t) \Rightarrow \neg r(t,h) \quad \forall h,t$$

- Example: Hypernym
- TransR can model antisymmetric relations:

1-to-N Relations in TransR

1-to-N Relations:

- **Example**: If (h, r, t_1) and (h, r, t_2) exist in the knowledge graph.
- TransR can model 1-to-N relations
 - We can learn \mathbf{M}_r so that $\mathbf{t}_{\perp} = \mathbf{M}_r \mathbf{t}_1 = \mathbf{M}_r \mathbf{t}_2$
 - Note that t₁ does not need to be equal to t₂!

Inverse Relations in TransR

Inverse Relations:

$$r_2(h,t) \Rightarrow r_1(t,h)$$

- Example : (Advisor, Advisee)
- TransR can model inverse relations

 $\mathbf{r}_{2} = -\mathbf{r}_{1}, \mathbf{M}_{r_{1}} = \mathbf{M}_{r_{2}}, \text{ Then } \mathbf{M}_{r_{1}}\mathbf{t} + \mathbf{r}_{1} = \mathbf{M}_{r_{1}}\mathbf{h} \text{ and } \mathbf{M}_{r_{2}}\mathbf{h} + \mathbf{r}_{2} = \mathbf{M}_{r_{2}}\mathbf{t}\checkmark$ Space of entities: \mathbb{R}^{d} Space of relation r: \mathbb{R}^{k} $\underbrace{\mathbf{t}}_{\mathbf{M}_{r_{1}}} = \mathbf{M}_{r_{2}}$ $\underbrace{\mathbf{M}_{r_{1}}}_{\mathbf{h}} = \mathbf{M}_{r_{2}}$ $\underbrace{\mathbf{M}_{r_{1}}}_{\mathbf{h}} = \mathbf{M}_{r_{2}}$

Composition Relations:

$$r_1(x, y) \wedge r_2(y, z) \Rightarrow r_3(x, z) \quad \forall x, y, z$$

- **Example**: My mother's husband is my father.
- TransR can model composition relations

High-level intuition: TransR models a triplet with linear functions, they are chainable.

Composition Relations:

$$r_1(x,y) \wedge r_2(y,z) \Rightarrow r_3(x,z) \quad \forall x, y, z$$

Background:

Kernel space of a matrix M:

 $\mathbf{h} \in \operatorname{Ker}(\mathbf{M})$, then $\mathbf{M} \cdot \mathbf{h} = \mathbf{0}$

Composition Relations:

$$r_{1}(x, y) \land r_{2}(y, z) \Rightarrow r_{3}(x, z) \quad \forall x, y, z$$
Assume $\mathbf{M}_{r_{1}}\mathbf{g}_{1} = \mathbf{r}_{1}$ and $\mathbf{M}_{r_{2}}\mathbf{g}_{2} = \mathbf{r}_{2}$
For $r_{1}(x, y)$:
 $r_{1}(x, y)$ exists $\Rightarrow \mathbf{M}_{r_{1}}\mathbf{x} + \mathbf{r}_{1} = \mathbf{M}_{r_{1}}\mathbf{y} \Rightarrow$
 $\mathbf{y} - \mathbf{x} \in \mathbf{g}_{1} + \operatorname{Ker}(\mathbf{M}_{r_{1}}) \Rightarrow \mathbf{y} \in \mathbf{x} + \mathbf{g}_{1} + \operatorname{Ker}(\mathbf{M}_{r_{1}})$
Same for $r_{2}(y, z)$:
 $r_{2}(y, z)$ exists $\Rightarrow \mathbf{M}_{r_{2}}\mathbf{y} + \mathbf{r}_{2} = \mathbf{M}_{r_{2}}\mathbf{z} \Rightarrow$
 $\mathbf{z} - \mathbf{y} \in \mathbf{g}_{2} + \operatorname{Ker}(\mathbf{M}_{r_{2}}) \Rightarrow \mathbf{z} \in \mathbf{y} + \mathbf{g}_{2} + \operatorname{Ker}(\mathbf{M}_{r_{2}})$

Then, we have

$$\mathbf{z} \in \mathbf{x} + \mathbf{g_1} + \mathbf{g_2} + \operatorname{Ker}(\mathbf{M}_{r_1}) + \operatorname{Ker}(\mathbf{M}_{r_2})$$

Composition Relations:

 $r_1(x,y) \wedge r_2(y,z) \Rightarrow r_3(x,z) \quad \forall x, y, z$

We have $\mathbf{z} \in \mathbf{x} + \mathbf{g_1} + \mathbf{g_2} + \operatorname{Ker}(\mathbf{M}_{r_1}) + \operatorname{Ker}(\mathbf{M}_{r_2})$

Construct
$$\mathbf{M}_{r_3}$$
, s.t.
Ker $(\mathbf{M}_{r_3}) = \text{Ker}(\mathbf{M}_{r_1})$ + Ker (\mathbf{M}_{r_2})

Since:

• dim
$$\left(\operatorname{Ker}(\mathbf{M}_{r_3})\right) \ge \operatorname{dim}\left(\operatorname{Ker}(\mathbf{M}_{r_1})\right)$$

• \mathbf{M}_{r_3} has the same shape as \mathbf{M}_{r_1}

We know \mathbf{M}_{r_3} exists!

- Set $\mathbf{r}_3 = \mathbf{M}_{r_3}(\mathbf{g}_1 + \mathbf{g}_2)$
- We are done! We have $\mathbf{M}_{r_3}\mathbf{x} + \mathbf{r}_3 = \mathbf{M}_{r_3}\mathbf{z}$

Today: KG Completion Models

• What we learned so far:

Model	Score	Embedding	Sym.	Antisym.	lnv.	Compos.	1-to-N
TransE	$-\ \mathbf{h}+\mathbf{r}-\mathbf{t}\ $	h , t , $\mathbf{r} \in \mathbb{R}^k$	×	\checkmark	\checkmark	\checkmark	×
TransR	$-\ \boldsymbol{M}_r\mathbf{h}+\mathbf{r}\\-\boldsymbol{M}_r\mathbf{t}\ $	h , t $\in \mathbb{R}^k$, r $\in \mathbb{R}^d$, $M_r \in \mathbb{R}^{d \times k}$	\checkmark	\checkmark	✓	\checkmark	✓

Beyond Simple Graphs: Knowledge Graphs Knowledge Graph Completion: DistMult

New Idea: Bilinear Modeling

- So far: The scoring function f_r(h, t) is negative of L1 / L2 distance in TransE and TransR
- Idea: Use bilinear modeling:
 Score function: $f_r(h, t) = h \cdot A \cdot t$ h, t ∈ \mathbb{R}^k , A ∈ $\mathbb{R}^{k \times k}$
- Problem: Too general and prone to overfitting
 - Matrix A is too expressive
- Fix: Limit A to be diagonal
 - This is called DistMult

New Idea: Bilinear Modeling

- **DistMult**: Entities & relations are vectors in \mathbb{R}^k
- Score function:

 $f_r(h,t) = \langle \mathbf{h}, \mathbf{r}, \mathbf{t} \rangle = \sum_i \mathbf{h}_i \cdot \mathbf{r}_i \cdot \mathbf{t}_i$ $f_r(h,t)$ • **h**, **r**, **t** $\in \mathbb{R}^k$ Sum r Product h t

DistMult

- **DistMult**: Entities and relations using vectors in \mathbb{R}^k
- Score function: $f_r(h, t) = \langle \mathbf{h}, \mathbf{r}, \mathbf{t} \rangle = \sum_i \mathbf{h}_i \cdot \mathbf{r}_i \cdot \mathbf{t}_i$
 - **h**, **r**, **t** $\in \mathbb{R}^k$
- Intuition of the score function: Can be viewed as a cosine similarity between $\mathbf{h} \cdot \mathbf{r}$ and \mathbf{t}

where $\mathbf{h} \cdot \mathbf{r}$ is defined as $[\mathbf{h} \cdot \mathbf{r}]_i = \mathbf{h}_i \cdot \mathbf{r}_i$ product Example:

$$f_r(h, t_1) < 0, \qquad f_r(h, t_2) > 0$$

1-to-N Relations in DistMult

1-to-N Relations:

• **Example**: If (h, r, t_1) and (h, r, t_2) exist in the knowledge graph

DistMult can model 1-to-N relations

< h, r, t₁ > = < h, r, t₂ >

Symmetric Relations in DistMult

Symmetric Relations:

$$r(h,t) \Rightarrow r(t,h) \quad \forall h,t$$

- **Example:** Family, Roommate
- DistMult can naturally model symmetric relations

$$f_r(h, t) = <\mathbf{h}, \mathbf{r}, \mathbf{t} > = \sum_i \mathbf{h}_i \cdot \mathbf{r}_i \cdot \mathbf{t}_i = <\mathbf{t}, \mathbf{r}, \mathbf{h} > = f_r(t, h)$$

Due to the commutative property of multiplication.

Limitation: Antisymmetric Relations

Antisymmetric Relations:

$$r(h,t) \Rightarrow \neg r(t,h) \quad \forall h,t$$

- Example: Hypernym
- DistMult cannot model antisymmetric relations

$$f_r(h,t) = \langle \mathbf{h}, \mathbf{r}, \mathbf{t} \rangle = \langle \mathbf{t}, \mathbf{r}, \mathbf{h} \rangle = f_r(t,h) \times$$

r(h, t) and r(t, h) always have same score!

DistMult cannot differentiate between head entity and tail entity! This means that all relations are modelled as symmetric regardless, i.e., even anti-symmetric relations will be represented as symmetric.

Limitation: Inverse Relations

Inverse Relations:

$$r_2(h,t) \Rightarrow r_1(t,h)$$

- Example : (Advisor, Advisee)
- DistMult cannot model inverse relations ×
 - Assume DistMult does model inverse relations:

$$f_{r_2}(h,t) = <\mathbf{h}, \mathbf{r}_2, \mathbf{t} > = <\mathbf{t}, \mathbf{r_1}, \mathbf{h} > = f_{r_1}(t,h)$$

- This means $\mathbf{r}_2 = \mathbf{r}_1$
- But semantically this does not make sense: The embedding of "Advisor" should not be the same with "Advisee".

Today: KG Completion Models

• What we learned so far:

Model	Score	Embedding	Sym.	Antisym.	Inv.	Compos.	1-to-N
TransE	$-\ \mathbf{h}+\mathbf{r}-\mathbf{t}\ $	h, t, $\mathbf{r} \in \mathbb{R}^k$	×	\checkmark	\checkmark	\checkmark	×
TransR	$-\ \boldsymbol{M}_r\mathbf{h}+\mathbf{r}\\-\boldsymbol{M}_r\mathbf{t}\ $	$\mathbf{h}, \mathbf{t} \in \mathbb{R}^k, \ \mathbf{r} \in \mathbb{R}^d, \ M_r \in \mathbb{R}^{d imes k}$	~	~	~	~	~
DistMult	< h, r, t >	h, t, $\mathbf{r} \in \mathbb{R}^k$	\checkmark	×	×	×	\checkmark

Beyond Simple Graphs: Knowledge Graphs Knowledge Graph Completion: ComplEx

ComplEx

- Based on Distmult, Complex embeds entities and relations in Complex vector space
- Complex: model entities and relations using vectors in \mathbb{C}^k

ComplEx

- Based on Distmult, Complex embeds entities and relations in Complex vector space
- Complex: model entities and relations using vectors in \mathbb{C}^k
- Score function $f_r(h, t) = \text{Re}(\sum_i \mathbf{h}_i \cdot \mathbf{r}_i \cdot \bar{\mathbf{t}}_i)$

Antisymmetric Relations in ComplEx

Antisymmetric Relations:

$$r(h,t) \Rightarrow \neg r(t,h) \quad \forall h,t$$

- Example: Hypernym
- Complex can model antisymmetric relations
 - The model is expressive enough to learn

• High
$$f_r(h, t) = \frac{\text{Re}(\sum_i \mathbf{h}_i \cdot \mathbf{r}_i \cdot \mathbf{\bar{t}}_i)}{\mathbf{h}_i \cdot \mathbf{r}_i \cdot \mathbf{\bar{t}}_i}$$

• Low $f_r(t,r) = \operatorname{Re}(\sum_i t_i \cdot \mathbf{r}_i \cdot \overline{\mathbf{h}}_i)$

Due to the asymmetric modeling using complex conjugate.

Symmetric Relations in ComplEx

Symmetric Relations:

$$r(h,t) \Rightarrow r(t,h) \quad \forall h,t$$

- **Example:** Family, Roommate
- Complex can model symmetric relations
 - When $Im(\mathbf{r}) = 0$, we have

•
$$f_r(h, t) = \operatorname{Re}(\sum_i \mathbf{h}_i \cdot \mathbf{r}_i \cdot \bar{\mathbf{t}}_i) = \sum_i \operatorname{Re}(\mathbf{r}_i \cdot \mathbf{h}_i \cdot \bar{\mathbf{t}}_i)$$

= $\sum_i \mathbf{r}_i \cdot \operatorname{Re}(\mathbf{h}_i \cdot \bar{\mathbf{t}}_i) = \sum_i \mathbf{r}_i \cdot \operatorname{Re}(\bar{\mathbf{h}}_i \cdot \mathbf{t}_i) = \sum_i \operatorname{Re}(\mathbf{r}_i \cdot \bar{\mathbf{h}}_i \cdot \mathbf{t}_i) = f_r(t, h)$

Inverse Relations in ComplEx

Inverse Relations:

$$r_2(h,t) \Rightarrow r_1(t,h)$$

- Example : (Advisor, Advisee)
- ComplEx can model inverse relations
 - $\mathbf{r}_1 = \bar{\mathbf{r}}_2$
 - Complex conjugate of

$$\mathbf{r}_2 = \underset{\mathbf{r}}{\operatorname{argmax}} \operatorname{Re}(\langle \mathbf{h}, \mathbf{r}, \overline{\mathbf{t}} \rangle)$$
 is exactly $\mathbf{r}_1 = \underset{\mathbf{r}}{\operatorname{argmax}} \operatorname{Re}(\langle \mathbf{t}, \mathbf{r}, \overline{\mathbf{h}} \rangle)$.

Composition and 1-to-N

Composition Relations:

$$r_1(x, y) \wedge r_2(y, z) \Rightarrow r_3(x, z) \quad \forall x, y, z$$

- **Example**: My mother's husband is my father.
- 1-to-N Relations:
 - **Example**: If (h, r, t_1) and (h, r, t_2) exist in the knowledge graph
- Complex share the same property with DistMult
 - Cannot model composition relations
 - Can model 1-to-N relations

Today: KG Completion Models

• What we learned so far:

Model	Score	Embedding	Sym.	Antisym.	Inv.	Compos.	1-to-N
TransE	$-\ \mathbf{h}+\mathbf{r}-\mathbf{t}\ $	h, t, $\mathbf{r} \in \mathbb{R}^k$	×	\checkmark	\checkmark	\checkmark	×
TransR	$-\ \boldsymbol{M}_r\mathbf{h}+\mathbf{r}\\-\boldsymbol{M}_r\mathbf{t}\ $	h, t $\in \mathbb{R}^k$, r $\in \mathbb{R}^d$, $M_r \in \mathbb{R}^{d \times k}$	✓	~	~	✓	~
DistMult	< h, r, t >	h, t, $\mathbf{r} \in \mathbb{R}^k$	\checkmark	×	×	×	\checkmark
ComplEx	Re(< h , r , t >)	h, t, $\mathbf{r} \in \mathbb{C}^k$	\checkmark	\checkmark	\checkmark	×	\checkmark

Summary of Knowledge Graph

- Link prediction / Graph completion is one of the prominent tasks on knowledge graphs
- Introduce TransE / TransR / DistMult / ComplEx models with different embedding space and expressiveness
- **Next:** Reasoning in Knowledge Graphs